

НАБОР ДЛЯ НАВИГАЦИОННОЙ ДЕНТАЛЬНОЙ ИМПЛАНТАЦИИ

НОВЫЙ УРОВЕНЬ ТОЧНОСТИ. ЭРГОНОМИКИ И БЕЗОПАСНОСТИ ИМПЛАНТАЦИИ

Новый уровень точности и эргономики Каталог и инструкции по применению Набор инструментов, характеристики и преимущества... Эргономика набора для навигационной дентальной имплантации 5 Направляющие втулки для сверления Схема применения втулок и сверл Комплектация набора Хирургический протокол Информация для заказа

Мы воплотили наш девиз «Simplantology» в новейших разработках специальной оснастки и инструментария для дооперационного планирования установки имплантатов, автоматизированного проектирования (CAD) и производства (САМ) навигационных шаблонов с опорой на зубы, слизистую оболочку, а также на специальные фиксаторы. С созданием набора инструментов и втулок для навигационной дентальной имплантации мы вывели процессы дооперационного планирования и контролируемой имплантации на новый уровень, качества, эргономики и прогнозируемости.

- Цифровые технологии дооперационного планирования имплантации и направляющих навигационных шаблонов позволяют точно учесть костное предложение и структурнофункциональное состояние кости в области имплантации, взаимно согласовать план ортопедической реабилитации с хирургическим этапом установки имплантатов, а также при необходимости провести малоинвазивную имплантацию по безлоскутному протоколу «Flapless».
- Наши новейшие разработки в области дооперационного планирования установки имплантатов, автоматизированного проектирования, CAD/CAM производства зубных протезов и навигационных шаблонов позволяют изготовить провизорные конструкции на имплантатах еще на этапе планирования имплантации и до удаления зубов и физической установки имплантатов, а с помощью навигационного шаблона и направляющих втулок для сверления опорные имплантаты устанавливаются точно в запланированной позиции.
- Применение навигационных шаблонов поможет расширить показания к дентальной имплантации в сложных случаях, сделает доступным «Flapless» протокол без формирования классического лоскута, сократит сроки реабилитации пациентов, снизит трудоемкость и количество клинико-лабораторных этапов изготовления конструкций зубных протезов.

Каталог и инструкции по применению

НАБОР ИНСТРУМЕНТОВ ХАРАКТЕРИСТИКИ И ПРЕИМУЩЕСТВА

Набор состоит из различных свёрл, втулок и инструментов, необходимых для проведения всей навигационной хирургической процедуры от начала до конца.

- Хирургический бокс и подставки для сверл и инструментов разработаны специально для стерилизации методом автоклавирования с использованием различных автоклавов и любых программ стерилизации.
- Максимально эргономичный дизайн позволяет хирургам интуитивно и пошагово выбирать сверла, инструменты или направляющие втулки для сверления, необходимые на различных этапах подготовки костного ложа.
- Сверла с заданной глубиной сверления через шаблон в диапазоне от 8 мм до 16 мм созданы для высокоточной и контролируемой процедуры подготовки костного ложа под имплантаты в соответствии с планом имплантации, разработанным по данным компьютерной томографии в специальных программах планирования имплантации.
- Сверла для подготовки костного ложа под фиксирующие навигационный шаблон пины для горизонтальной фиксации или сверла-пины для вертикальной стабилизации шаблона созданы для клинических случаев с адентией или концевыми дефектами зубных рядов, а также для условий плохой фиксации шаблона на подвижных зубах.
- Направляющие втулки для сверления обладают высокоточной геометрией и полностью соответствуют сверлам для формирования костного ложа через навигационный шаблон.
- Направляющие втулки для сверления сверлами диаметром 1,5 мм предназначены для формирования костного ложа под фиксирующие пины для стабилизации и фиксации навигационного шаблона.
- Навигационные имплантоводы используются для установки имплантатов через втулки в навигационном шаблоне в заданном направлении и на заранее спланированную и строго контролируемую глубину его погружения в кость.

Для изготовления набора для навигационной дентальной имплантации использованы биоиндифферентные материалы с высокой степенью износостойкости при циклических нагрузках во время подготовки костного ложа и стерилизации:

- Бокс для стерилизации и подставка для инструментов и сверл изготовлены из полифенилсульфонового полимера марки Radel®;
- Инструменты, свёрла и направляющие втулки изготовлены из высококачественной нержавеющей стали.

ЭРГОНОМИКА НАБОРА ДЛЯ НАВИГАЦИОННОЙ ДЕНТАЛЬНОЙ ИМПЛАНТАЦИИ

- Все инструменты на подставке расположены в секторах в соответствии с общей концепцией их пошагового использования.
- Слева направо расположены сектора с инструментами, которые стоматолог-хирург интуитивно выбирает на каждом этапе дентальной имплантации.

ПОДГОТОВКА И ФИКСАЦИЯ ХИРУРГИЧЕСКОГО ШАБЛОНА В первом секторе расположены инструменты, необходимые для создания доступа через слизистую оболочку к кости – мукотомы различного диаметра. После того, как получен доступ к костной ткани, становиться возможным применение пилотных сверл, а также пинов для вертикальной и горизонтальной фиксации.

ФОРМИРОВАНИЕ КОСТНОГО ЛОЖА Создание костного ложа под имплантат. Посадочные гнезда каждого сверла окрашены в цвет маркеров на держателях сверл, т. е. в соответствии с цветовым кодом диаметра.

* Цвета маркировки также полностью соответствуют каталогу для заказа продукции Alpha-Bio Tec. Такой подход позволяет быстро выбрать сверла нужного диаметра для имплантации, а также правильно разместить их в подставке на этапе стерилизации.

УСТАНОВКА ИМПЛАНТАТА Установка имплантата через навигационный шаблон на заданную в программе планирования глубину. Сектор на подставке с навигационными имплантоводами - третий, окрашен в зеленый цвет.

ИНСТРУМЕНТЫИ АКСЕССУАРЫ

Дополнительные инструменты, втулки-адаптеры, трансфер для втулок-адаптеров, отвертки расположены в секторе фиолетового цвета.

^{*} На подставке предусмотрено место для динамометрического ключа (ключ опционален и заказывается отдельно). Также на подставке в нижнем правом углу размещен небольшой лоток из нержавеющей стали.

НАПРАВЛЯЮЩИЕ ВТУЛКИ ДЛЯ СВЕРЛЕНИЯ

В зависимости от разработанного плана имплантации, дизайна навигационного шаблона, а также от диаметра устанавливаемого имплантата подбирается необходимая втулка из существующего модельного ряда. Модельный ряд направляющих втулок для сверления, вклеиваемых в шаблон, представлен тремя типами.

1 Втулка первого типа | узкая

Для сверления сверлами диаметром 1,5 мм, предназначена для формирования костного ложа под фиксирующие пины для стабилизации и фиксации навигационного шаблона.

2 Втулка второго типа | стандартная

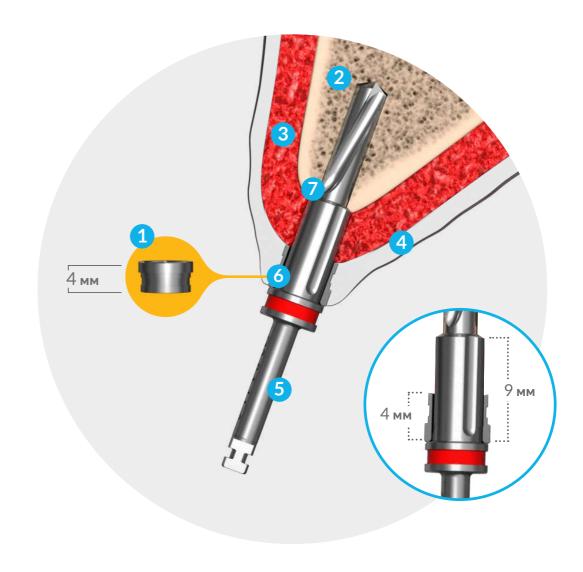
Предназначена для сверления и установки имплантатов диаметром от 3,2 мм до 3,75 мм включительно.

3 Втулка третьего типа | широкая

Предназначена для сверления и установки имплантатов диаметром от 4,2 мм до 5,3 мм включительно.

• Втулки-адаптеры

Используются в случае установки имплантатов диаметром от 4,2 мм до 5,3 мм для начального формирования костного ложа сверлами диаметром от 2,0 мм до 4,1 мм включительно. Втулки-адаптеры компенсируют разницу и заполняют собой пространство между большим диаметром отверстия для сверления в широкой втулке (SLL) и узким наружным диаметром сверл (\emptyset 2,0 мм до \emptyset 4,1 мм) на начальных этапах подготовки костного ложа под имплантат.


• Трансфер для втулок-адаптеров

Предназначен для интраоперационного применения. Он позволяет надежно закрепить на нем втулкуадаптер, затем перенести ее в полость рта пациенту без риска уронить и установить в широкую втулку для сверления (SLL). После формирования костного ложа сверлом 4,1 мм при помощи трансфера втулка демонтируется из широкой направляющей втулки для сверления (SLL) и переноситься обратно на подставку.

	НАПРАВЛЯЮЩИЕ В	гулки	НАПРАВЛЯЮЩИЕ ВТУЛКИ	ВТУЛКИ- АДАПТЕРЫ	ТРАНСФЕР ДЛЯ ВТУЛОК- АДАПТЕРОВ Предназначен для установки/демонтажа втулок-адаптеров в широкие направ- ляющие втулки	
	Предназначены дл и установки им	•	Предназначены для сверления и установки фиксирующих горизонтальных пинов	Предназначены для адаптации сверла малого диаметра в широкой втулке SLL		
	Ø4.1 мм СТАНДАРТНАЯ	Ø5.5 мм	II J J J J J J J J J J J J J J J J J J	Ø4.1		
КОД	SLS	SLL	SLSE	SLSA	SAD	
АРТИКУЛ	66012	66012 66013		65058	65057	
	Совместимы с имплантатами Ø 3.2, Ø 3.3, Ø 3.5, Ø 3.7N и Ø 3.75 в упаковке 5 шт	Совместимы с имплантатами: Ø 4.2, Ø 4.65, Ø 5.0 и Ø 5.3. в упаковке 5 шт	Совместимы со сверлом 1.5 мм и латеральными пинами. В упаковке 5 шт	Для формирования костного ложа сверлами Ø от 2,0 мм до 4,1 мм включительно. "необходимо извлечь перед установкой имплантата.	Совместимы с втулками- адаптерами SLSA	

СХЕМА ПРИМЕНЕНИЯ ВТУЛОК И СВЕРЛ

| ДЛЯ ФОРМИРОВАНИЯ КОСТНОГО ЛОЖА ПОД ИМПЛАНТАТ ЧЕРЕЗ НАВИГАЦИОННЫЙ ШАБЛОН

- 1 Направляющая втулка для сверления (вклеена в навигационный шаблон)
- 2 Костная ткань
- 3 Слизистая оболочка
- 4 Навигационный шаблон
- 5 Сверло для формирования костного ложа
- Направляющая часть сверла для сверления через втулку длиной 9 мм
- Рабочая часть сверла для формирования костного ложа (равна длине устанавливаемого имплантата)

НАБОР ДОСТУПЕН В ТРЕХ РАЗЛИЧНЫХ КОМПЛЕКТАЦИЯХ

Haбop Alpha-Bio Tec GSTK можно использовать с любым программным обеспечением для планирования имплантации.

НАБОР ДОСТУПЕН В ТРЕХ КОМПЛЕКТАЦИЯХ:

^{*} Ключ-трещотка НЕ входит в набор.

ИСПОЛЬЗОВАНИЕ НАВИГАЦИОННОГО ШАБЛОНА, НАБОРА ДЛЯ НАВИГАЦИОННОЙ ДЕНТАЛЬНОЙ ИМПЛАНТАЦИИ GSTK C НАПРАВЛЯЮЩИМИ ВТУЛКАМИ

І ЭТАП Подготовка навигационного шаблона и набора для навигационной дентальной имплантации GSTK к использованию

1 НАВИГАЦИОННЫЙ ШАБЛОН:

До проведения операции навигационный шаблон припасовать в полости рта, убедившись по контрольным окнам для ревизии в точности посадки, отсутствии балансирования или люфта при нажатии на его края [1]. При заклинивании шаблона на экваторах зубов или поднутрениях необходимо жидким маркером или маркером-спреем обработать шаблон изнутри - с внутренней стороны посадочных мест на зубы [2].

Затем следует плотно прижать шаблон на опорных зубах [3].



В местах стирания маркера фрезой сошлифовать незначительный слой материала [5].

Повторить процедуру припасовки сначала. Если после незначительной коррекции шаблон полностью сел на свое посадочное место, необходимо провести его очистку от маркера и химическую стерилизацию. Если шаблон после коррекции не удалось зафиксировать на опорных зубах в правильном положении или шаблон имеет существенную подвижность или люфт, необходимо повторно получить оттиски с опорных зубов и отправить на повторное изготовление навигационного шаблона.

Также на этом этапе желательно продумать дизайн слизисто-надкостничного лоскута и в той области, где будет размещен откинутый лоскут, края шаблона нужно максимально укоротить, но при этом сохранить баланс между прочностью конструкции и удобством работы. Истончать шаблон чрезмерно нельзя, поскольку это может привести к его поломке в момент сверления.

Примечание: Точность сверления и установки имплантатов через навигационный шаблон с применением набора для навигационной дентальной имплантации GSTK от Alpha-Bio Tec зависит исключительно от точности отображения костной ткани в полученных однокадровых DICOM файлах (погрешность конусно-лучевого дентального компьютерного томографа), от точности полученного силиконового оттиска (скана) и рабочей модели (3D виртуальной модели), от правильности размещения дентальных имплантатов в аппаратно-программных комплексах для планирования имплантации и изготовления САD дизайна навигационного шаблона, от технологии изготовления навигационного шаблона (фрезерование шаблона или 3D-печать), а также от точности посадки, качества фиксации и неподвижности шаблона во время операции.

Провести химическую (холодную) стерилизацию.

М Не использовать автоклавирование или воздушную сухожаровую стерилизацию!

Примечание: содержание спирта в растворе для стерилизации не должно превышать 15%, а общее время экспозиции в растворе не должно превышать 30 мин.

- Очистить поверхность шаблона от раствора для стерилизации путем тщательной промывки стерильным физраствором. После промывки шаблон можно поместить в стерильный контейнер с хлоргексидином.
- Перед применением шаблона разместить его на стерильном рабочем столе до операции с целью стекания с него хлоргексидина и сушки поверхности.
- Подготовить набор для навигационной дентальной имплантации GSTK к операции: провести предстерилизационную дезинфекцию и дальнейшую стерилизацию методом автоклавирования. Набор GSTK необходимо стерилизовать методом автоклавирования при температуре 121°C в течение 40 минут (режимы стерилизации и сушки подбирать в соответствии с рекомендациями производителя стерилизационного оборудования).

⚠ Не использовать воздушную сухожаровую стерилизацию!

ІІ ЭТАП

Интраоперационный протокол применения навигационного шаблона и набора для навигационной дентальной имплантации GSTK

КЛИНИЧЕСКИЕ ЭТАПЫ:

ШАГ 1 Наложение и фиксация хирургического шаблона.

Подвижный шаблон во время сверления приводит к существенным погрешностям в формировании костного ложа под дентальный имплантат. Избежать этого при фиксации шаблона на зубах можно, сильно прижав его рукой во время сверления через втулку ^[6].

В клинической ситуации, где дистальной опоры на зубы нет, или при адентии рекомендуется использовать горизонтальные и/или вертикальные пины для стабилизации шаблона и удержания его от смещения в момент сверления [7].

Тип фиксации шаблона выбирает хирург, исходя из анатомических условий в области имплантации, на этапе компьютерного планирования имплантации и моделирования шаблона. При адентии всегда рекомендуется использовать горизонтальную фиксацию как основную с возможным дополнением, по желанию хирурга, вертикальной стабилизацией на втулках для

Вертикальную фиксацию через втулки можно применить в любой области, где есть втулки. Горизонтальную фиксацию необходимо планировать заранее. Для этого в навигационном шаблоне необходимо предусмотреть размещение втулок для горизонтального сверления, выставить их на требуемую глубину погружения сверла в кость и изготовить шаблон с посадочными местами под втулки для горизонтального сверления и фиксации при помощи горизонтальных пинов.

На клиническом этапе фиксации горизонтальными пинами в случаях с адентией необходимо использовать окклюзионные позиционеры. Окклюзионные позиционеры используют для переноса позиции шаблона из окклюдатора (артикулятора) в полость рта. После химической стерилизации окклюзионный позиционер устанавливают между шаблоном и зубами антагонистами и просят пациента накусить.

Затем, не открывая рта пациента, отодвигают щеку и, проведя предварительно инфильтрационную анестезию, через горизонтальную втулку с одной из сторон проводят сверлениедо упора сверлом 1,5 мм. После сверления во втулку до упора устанавливают пин. Процедуру повторяют в области всех втулок для горизонтальной фиксации на этой стороне. Описанные манипуляции повторяют на противоположной стороне.

Только после того, как все горизонтальные пины будут установлены во втулки и шаблон станет неподвижным, окклюзионный позиционер извлекают из полости рта и переходят к следующему этапу - этапу перфорации слизистой оболочки мукотомами.

Формирование трансмукозного доступа к костной ткани с использованием мукотомов

«FLAPLESS» МЕТОДИКА УСТАНОВКИ ДЕНТАЛЬНЫХ ИМПЛАНТАТОВ.

Показания к применению:

- Наличие прикрепленной слизистой оболочки в области имплантации толщиной более 2,0 мм;
- Наличие прикрепленной слизистой оболочки в области вокруг будущей шейки имплантата во все стороны в пределах 3 мм, в идеале кератинизированной в эстетической зоне;
- Наличие костной ткани вокруг имплантата в запланированной зоне имплантации не менее 1,5 мм во всех направлениях;
- Расстояние между стенками рядом расположенных имплантатов 3 мм и более;
- Расстояние от корня рядом расположенного зуба до имплантата не менее 1,5 мм;
- Соматические заболевания у пациентов, при которых длительные хирургические вмешательства или обширные разрезы в полости рта противопоказаны;
- Ранее проведенные костнопластические процедуры в зоне имплантации и/или мягкотканые аугментации для увеличения объёма кости и утолщения биотипа пародонта;

«FLAPLESS» МЕТОДИКА УСТАНОВКИ ДЕНТАЛЬНЫХ ИМПЛАНТАТОВ.

Противопоказания к применению 🗘

- Отсутствие прикрепленной слизистой оболочки в области имплантации (необходимо провести пластику мягких тканей с целью формирования прикрепленной области вокруг будущей шейки имплантата во все стороны в пределах 3 мм, в идеале кератинизированной в эстетической зоне);
- Тонкий биотип пародонта и/или толщина слизистой оболочки в области имплантации менее 2,0 мм (необходимо провести аугментацию мягких тканей в области имплантации);
- Дефицит костной ткани вокруг имплантата и/или необходимость костной пластики;
- Расстояние между стенками рядом расположенных имплантатов менее 3 мм;
- Расстояние от корня рядом расположенного зуба до имплантата менее 1,5 мм;
- Соматические заболевания у пациентов, при которых хирургические вмешательства в полости рта противопоказаны.

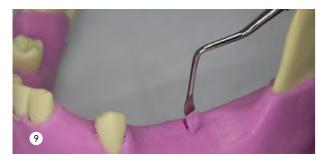
При установке имплантатов диаметром от 3,2 мм до 3,75 мм необходимо для перфорации слизистой и надкостницы применить мукотом (артикул 65003) диаметром 4.1 мм.

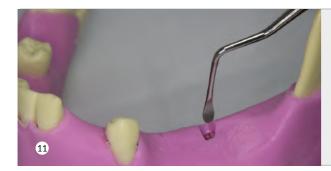
TPS 65003

TPL 65004

При установке имплантатов диаметром от 4,2 мм до 5,3 мм необходимо для перфорации слизистой и надкостницы применить мукотом (артикул 65004) диаметром 5.45 мм.

Провести инфильтрационную анестезию.



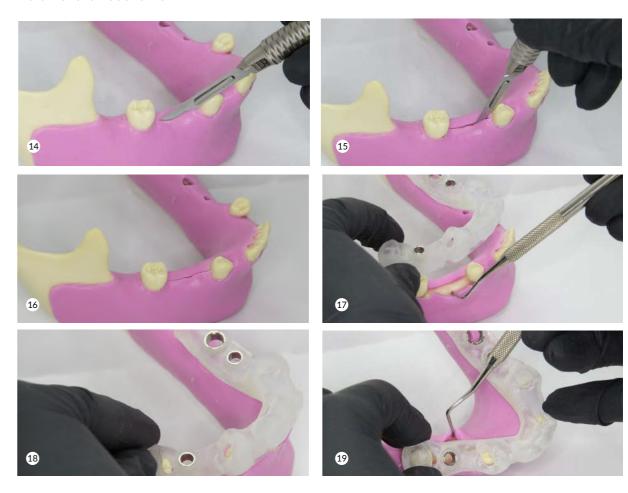

Наложить навигационный шаблон на опорные зубы. Установить в угловой наконечник физиодиспенсера мукотом необходимого диаметра. На оборотах 800 - 1000 об/мин через втулку навигационного шаблона перфорировать слизистую оболочку и надкостницу до ощущения упора в кость. Повторить процедуру в каждой втулке для сверления.

Снять шаблон с опорных зубов. При помощи малого распатора диаметром 2,5–3,5 мм (или острого большого экскаватора диаметром 2,5 мм) отделить круглые полные слизистонадкостничные лоскуты от кортикальной пластины альвеолярного отростка [8-9-10].

Оставшиеся части волокон на кости зачистить острым распатором или экскаватором.

Следует избегать повреждений мягких тканей за пределами мукотомического отверстия [11].

При наличии тяжей в слизистой процедуру мукотомии повторить мукотомом без шаблона, с некоторыми круговыми движениями вдоль оси формирования доступа до полного пересечения тяжа и отделения полного лоскута [12-13].


Формирование классического доступа к костной ткани с выкраиванием и откидыванием слизисто-надкостничного лоскута

Провести инфильтрационную анестезию. Наложить навигационный шаблон на опорные зубы и/или слизистую оболочку. Разметить зону имплантации на слизистой оболочке, проколов ее иглой или острым зондом вдоль язычной/небной стенок всех навигационных втулок.

Вариант 1. Если размеченная таким образом зона совпала с кератинизированной неподвижной слизистой, нужно провести разрез, соединяя размеченные точки. Далее вестибулярно отбрасывается слизисто-надкостничный лоскут. Язычную (небную) часть лоскута при такой методике откидывать нет смысла, т. к. она не помешает сформировать костное ложе и провести имплантацию.

Противопоказаниями к такой методике формирования лоскута являются необходимость аугментации костной или мягких тканей, а также отсутствие кератинизированной или прикрепленной слизистой оболочки по обе стороны от линии разреза.

Вариант 2. Если размеченная таким образом зона не совпала с кератинизированной неподвижной слизистой, следует отступить от зоны разметки к центру зоны кератинизации слизистой оболочки. Затем проводится разрез по центру зоны кератинизированной слизистой [14, 15]. В таком варианте отбрасывать лоскут необходимо и вестибулярно, и орально. Отслаивать лоскут нужно так, чтобы он не мешал наложению шаблона и не приводил к его балансированию на слизистой оболочке [16-17-18-19-20-21].

Желательно продумать дизайн лоскута до моделирования шаблона, и на этапе его изготовления в той области, где будет размещен откинутый лоскут, края шаблона нужно максимально укоротить, сохранив при этом баланс между прочностью конструкции и удобством работы. Истончать шаблон чрезмерно нельзя, поскольку это может привести к его поломке в момент сверления.

Пилотное сверление и создание горизонтальной площадки на альвеолярном отростке в области имплантации

Комбинированное пилотное сверло с кортикальной горизонтальной фрезой

CDL

65006

CDS

65005

Установить комбинированное пилотное сверло с кортикальной горизонтальной фрезой для формирования первичного остеотомического канала в угловой наконечник физиодиспенсера. На оборотах 800 об/мин с максимальной подачей охлаждающего физраствора на сверло через втулку навигационного шаблона за три подхода с вертикальными возвратно-поступательными движениями (для охлаждения кости) провести сверление до упора ответной фаски на сверле во втулку для сверления.

Применение комбинированного пилотного сверла с кортикальной горизонтальной фрезой позволит сформировать первичный остеотомический канал на глубину, а также удалить все костные выступы и сгладить все неровности на гребне альвеолярного отростка путем формирования горизонтальной площадки на его вершине в области размещения шейки имплантата [22-23].

Примечание:

При необходимости установки имплантатов диаметром от 3,2 мм до 3,75 мм используется комбинированное пилотное сверло (артикул 65005) с кортикальной горизонтальной фрезой Ø 4,1 мм для формирования первичного остеотомического канала. При необходимости установки имплантатов диаметром от 4,2 мм до 5,3 мм используется комбинированное пилотное сверло (артикул 65006) с кортикальной горизонтальной фрезой Ø 5,5 мм для формирования первичного остеотомического канала.

ЦАГ 4

Формирование ложа под дентальный имплантат

Примечание: При необходимости установки имплантатов диаметром от 4,2 мм до 5,3 мм для начального формирования костного ложа сверлами диаметром от 2,0 мм до 4,1 мм включительно необходимо в широкую втулку SLL в шаблоне установить втулку-адаптер (артикул 65058) для компенсации разницы и заполнения пространства между большим диаметром отверстия для сверления в широкой втулке (SLL) и узким наружным диаметром сверл (\emptyset 2,0 мм до \emptyset 4,1 мм) для начальных этапов подготовки костного ложа под имплантат.

Для фиксации втулки-адаптера (артикул 65058) в навигационном шаблоне необходимо использовать трансфер для втулок-адаптеров $^{[24]}$. Для этого выступ на рабочей части трансфера следует совместить с бороздой на втулке и путем прокручивания трансфера внутри втулки защелкнуть втулку на трансфере. Убедившись в правильности и надежности фиксации втулки на трансфере, перенести втулку в навигационный шаблон. Путем вращения трансфера с втулкой в посадочном месте зафиксировать втулку-адаптер в шаблоне $^{[25-27]}$. Провести сверление.

Установить пилотное сверло Ø 2,0 мм для дальнейшего формирования остеотомического канала в угловой наконечник физиодиспенсера [28]. На оборотах 800 об/мин и с максимальной подачей охлаждающего физраствора на сверло через втулку навигационного шаблона за три подхода с вертикальными возвратно-поступательными движениями (для охлаждения кости) провести сверление до упора ответной фаски на сверле во втулку для сверления. Применение пилотного сверла Ø 2,0 мм с длиной рабочей части от 8 мм до 16 мм позволяет задать глубину и направление для всех последующих этапов сверления и подготовки ложа под имплантат определённой длинны.

Трансфер для переноса втулокадаптеров

SAD

65057

Для разных типов имплантатов компания Alpha-Bio Тес предлагает оптимальные протоколы формирования костного ложа в зависимости от типа кости. Детальные протоколы приведены в каталоге продукции Alpha-Bio Тес, а также доступны на сайте www.alpha-bio.net.

В рамках соответствующего протокола проведите необходимое количество сверлений для формирования ложа под имплантат через навигационный шаблон.

Для каждого последующего, сверления начиная от \emptyset 2,0 мм, необходимо понижать скорость вращения сверла на 100 оборотов. Так, сверление сверлом \emptyset 2,4 мм необходимо проводить на скорости 700 об/мин. После сверления на всю глубину \emptyset 2,0 мм рекомендуется извлечь навигационный шаблон из полости рта и при помощи стандартного щупа-глубиномера проверить правильность глубины погружения и точность направления сверления [29].

При необходимости дополнительной фиксации и стабилизации шаблона в случае сверления под большое количество дентальных имплантатов и/или при подвижных зубах, на которые опирается шаблон, его рекомендуется зафиксировать в стратегических точках к гребню альвеолярного отростка с помощью фиксирующих вертикальных пинов через втулки для сверления [30].

Для этого на оборотах 50 об/мин необходимо через втулку в шаблоне вкрутить в кость пин (артикул 65048) для имплантатов диаметром до 3,75 мм или пин (артикул 65049) для имплантатов диаметром от 4,2 мм до 5,3 мм $^{[30-32]}$.

Примечание: При необходимости установки имплантатов диаметром от 4,65 мм до 5,3 мм после формирования костного ложа сверлом диаметром Ø 4,1 мм [32] следует извлечь втулкуадаптер (артикул 65058) из широкой втулки SSL при помощи трансфера для втулок-адаптеров (артикул 65057) [33]. Только после извлечения втулки-адаптера можно применить сверла диаметром 4,5 мм и 4,8 мм [34].

ШАГ 5 Установка им

Установка имплантата через навигационный шаблон

Раскрыть упаковку с дентальным имплантатом запланированной размерности $^{[35]}$. Открыть крышку стерильной капсулы с имплантатом, в зависимости от типа платформы имплантата - конусная или шестигранная, а также по диаметру имплантата выбрать навигационный имплантовод $^{[36]}$.

Для стандартной конусной платформы имплантата (CS, Ø3,75-5,0 мм) с шестигранным позиционером необходимо использовать навигационные имплантоводы:

тонкий - с артикулом 65064 для направленной и контролируемой имплантации имплантатов Ø 3,75 мм и фиксационный винт (артикул 65039);

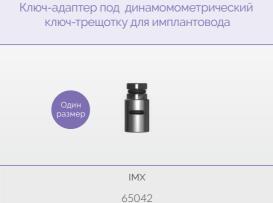
широкий - с артикулом 65065 для направленной и контролируемой имплантации имплантатов Ø 4,2 мм - Ø 5,0 мм и фиксационный винт (артикул 65039).

Для тонкой конусной платформы имплантата (СНС, Ø3,2-3,5 мм) с шестигранным позиционером необходимо использовать навигационный имплантовод с артикулом 65055 и фиксационный винт (артикул 65056) или быстросъёмный навигационный имплантовод с защелкой (артикул 65055), без возможности надежного прикручивания имплантата к имплантоводу.

Для шестигранной платформы имплантата необходимо использовать навигационные имплантоводы:

Тонкий - с артикулом 65037 для направленной и контролируемой имплантации имплантатов Ø 3,2 мм и Ø 3,75 мм и фиксационный винт (артикул 65039) или быстросъёмный навигационный имплантовод с защелкой (артикул 65062), без возможности надежного прикручивания имплантата к имплантоводу.

Широкий - с артикулом 65038 для направленной и контролируемой имплантации имплантатов Ø 4,2 мм и Ø 5,3 мм и фиксационный винт (артикул 65039) или быстросъёмный навигационный имплантовод с защелкой (артикул 65063), без возможности надежного прикручивания имплантата к имплантоводу.



Зафиксировать выбранный тип имплантовода к платформе имплантата фиксационным винтом $^{[38]}$, затем перенести его в полость рта, вращательными движениями по часовой стрелке рукой вкрутить имплантат через втулку в костное ложе до упора $^{[39-42]}$.

Установить ключ-адаптер под динамометрический ключ-трещотку (артикул 65042) [40] в динамометрический ключ или ключ-адаптер под угловой наконечник для навигационного имплантовода (артикул 65044) в угловой наконечник [39].

При использовании углового наконечника физиодиспенсера для установки имплантата машинным способом можно предварительно зафиксировать ключ-адаптер в наконечнике, а затем установить навигационный имплантовод с имплантатом сразу из стерильной капсулы через навигационную втулку шаблона в костное ложе $^{[40-42]}$. Ограничением могут быть анатомические условия в боковых отделах челюстей при незначительном открывании полости рта (до 30 мм). Затем при помощи углового наконечника $^{[45]}$ или динамометрического ключа-трещотки $^{[44]}$ с усилием, не превышающим 45-50 H/см, нужно установить имплантат до упора опорной площадки навигационного имплантовода во втулку в шаблоне $^{[42]}$.

В случае подклинивания имплантата в момент установки в костном ложе используется техника обратного выкручивания (но не более трех раз). Ключ-трещотка переставляется на режим выкручивания, осуществляется 2-3 движения против часовой стрелки, затем ключ-трещотка переставляется в режим вкручивания, после чего установка имплантата продолжается по часовой стрелке. В случае если имплантат с усилием 45-50 H/см заклинивает и техника вращения обратно с дальнейшим вращением по часовой стрелке не принесла результата, рекомендуется выкрутить имплантат из косного ложа, поместить его в стерильную капсулу и повторить два последних сверления.

Если после этих действий установка имплантата через навигационный шаблон невозможна из-за подклинивания имплантата в кости, необходимо провести установку имплантата традиционным способом, без использования навигационного шаблона.

ШАГ 6 Устан


Установка протетических элементов согласно предварительно разработанному плану ортопедической реабилитации пациента

Завершить процедуру имплантации, промыв шахту дентального имплантата от крови 1% раствором антибактериального препарата диоксидина, и, убедившись, что она очищена от крови, вкрутить в шахту имплантата необходимый протетический элемент в одном из следующих вариантов:

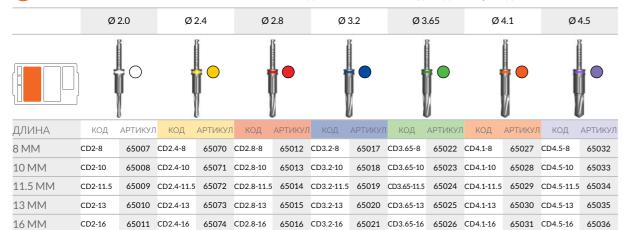
• Покрывной винт-заглушку с усилием 10 H/см (с последующим ушиванием раны) [46-49]

Формирователь десны с усилием 10 Н/см [50-54]

- Промежуточную мезоструктуру мультиюнит абатмент TCT-N с усилием 30 H/см и затем поверх него формирователь десны (10 H/см) или провизорную конструкцию зубного протеза с адгезивным колпачком (25 H/см)
- Титановую платформу с провизорной конструкцией зубного протеза с усилием 30 Н/см (20 Н/см фиксирующее усилие при прикручивании винтом титановых платформ к платформам имплантатов с коническим соединением с направляющим шестигранником).

Примечание: использование стандартных абатментов для фиксации провизорных конструкций зубных протезов при помощи цемента противопоказано в варианте непосредственного протезирования, поскольку излишки цемента попадут в рану и извлечь их будет невозможно.

Рекомендуется планировать фиксацию непосредственно изготовленных провизорных конструкций зубных протезов исключительно при помощи фиксационных винтов и предназначенных для такого вида протезирования протетических элементов Alpha-Bio Tec.



ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

1 ПОДГОТОВКА И ФИКСАЦИЯ ХИРУРГИЧЕСКОГО ШАБЛОНА

ФОРМИРОВАНИЕ КОСТНОГО ЛОЖА сверла с заданной глубиной сверления через шаблон в диапазоне от 8 мм до 16 мм, по 1 шт. каждого диаметра и длины

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

3 установка имплантата

	ИМПЛАН С ВИНТОВОЙ Ф		ИМПЛАНТО С ВИНТОВОЙ ФИК		ВИНТ ИМПЛАНТОВОДА IH/CS	ИМПЛАНТОВОД С ВИНТОВОЙ ФИКСАЦИЕЙ СНС	ВИНТ ИМПЛАНТОВОДА СНС	
	Тонкий	Широкий	Тонкий	Широкий		ij		
КОД	IMS	IML	IMSC_CS	IMLC_CS	IMHS	IMC	IMCS	
АРТИКУЛ	65037	65038	65064	65065	65039	65055	65056	

4 инструменты и аксессуары

	ОТВЕРТКА ДЛЯ МАНУАЛЬ- НОЙ РАБОТЫ	ОТВЕРТКА ДЛЯ РАБОТЫ С ДИНАМО- МЕТРИЧЕСКИМ КЛЮЧОМ	КЛЮЧ- АДАПТЕР ПОД ДИНАМО- МЕТРИЧЕСКИЙ КЛЮЧ- ТРЕЩОТКУ ДЛЯ ИМПЛАН- ТОВОДА	КЛЮЧ- АДАПТЕР ПОД УГЛОВОЙ НАКОНЕЧНИК ДЛЯ ИМПЛАН- ТОВОДА	ВИНТ ДЛЯ ИЗВЛЕЧЕНИЯ ИМПЛАН- ТОВОДА	ШАЙБА- АДАПТЕР ПОД ДИНАМО- МЕТРИЧЕСКИЙ КЛЮЧ- ТРЕЩОТКУ	ТРАНСФЕР ДЛЯ ПЕРЕНОСА ВТУЛОК- АДАПТЕРОВ	АДАПТЕР	ФИКСИРУЮЦ ВЕРТИКАЛ		ИМПЛАН	товод ін	ИМПЛАН- ТОВОД СНС
	Короткая	Один дазмер			- III IIII	Для ключей шестигранной головкой Ø 4 мм	й	Для широких втулок (SLL) при использовании тонких сверл	Тонкий	Широкий	Тонкий	Широкий	
			Ä			S		Ø4.1 MM	ij	Ų	ij	Ü	ij
КОД	HHSS1.25	HTD1.25S	IMX	HIA	IME	USH	SAD	SLSA*	CPS	CPL	IMSD	IMLD	IMCD
АРТИКУЛ	4053	4056	65042	65044	65045	4012	65057	65058	65048	65049	65062	65063	65061

Продукция Alpha-Bio Тес разрешена к продаже в СЕ в соответствии с директивой 93/42/EEC Продукция Alpha-Bio Тес соответствует требованиям стандарта EN ISO 13485:2016. Продукт сертифицирован в странах дистрибуции.

> Права на публикацию статьи принадлежат компании Alpha-Bio Tec © Леоненко Павел Викторович, DMD, DDS, Dr. med Dr. med dent., Professor

> > www.alpha-bio.net/ru

